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INVITED ARTICLE

Investigations of phase transitions in liquid crystals by means of adiabatic scanning calorimetry

Jan Thoen*, George Cordoyiannis and Christ Glorieux

Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en Sterrenkunde, Katholieke Universiteit Leuven,

Celestijnenlaan 200D, B-3001 Leuven, Belgium

(Received 19 December 2008; accepted 16 January 2009)

High-resolution calorimetric techniques have substantially contributed in characterising and understanding the
delicate thermal behaviour near many phase transitions in liquid crystals. In this paper we describe a high-resolution
adiabatic scanning calorimetric technique that has proven to be an important tool in discriminating between first-
order and second-order phase transitions in addition to rendering high-resolution information on fluctuations-
induced pretransitional specific heat capacity behaviour. The capabilities of adiabatic scanning calorimetry are
illustrated with experimental results for the isotropic to nematic and the isotropic to smectic A transitions for a series
of alkylcyanobiphenyl compounds. For the nematic to smectic A transition results are presented for pure compounds
and mixtures of liquid crystals as well as on the effects of added non-mesogenic solutes and nanoparticles. For chiral
molecules results for phase transitions involving blue phases and twist grain boundary phases are considered.
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1. Introduction

Liquid crystal compounds can exhibit a wide variety of

stable mesophases with symmetry intermediate

between that of isotropic liquids and solid crystals.

Such mesophases possess orientational order but
reduced or no positional order (1–3). The many differ-

ent phases and phase transitions make liquid crystals

excellent model systems for testing general phase tran-

sition and critical phenomena concepts. The first-order

or second-order (or continuous) character of the transi-

tion and the universality class of the critical exponents

have been investigated extensively. High-resolution

adiabatic and ac calorimetric techniques have contrib-
uted substantially by revealing subtle thermal features

and fluctuation effects at the phase transitions (4–6). In

particular, adiabatic scanning calorimetry has proven

to be an important tool to discriminate between first-

order and second-order transitions in addition to ren-

dering high-resolution information on pretransitional

specific heat capacity behaviour (7).

In this (mainly review) paper, we will concentrate
on results obtained by means of adiabatic scanning

calorimetry (ASC) for several types of phase transi-

tions. After presenting some general aspects of thermal

behaviour of phase transitions, the specific possibilities

of ASC will be explained. The subsequently discussed

phase transitions and results presented will focus on (1)

the isotropic to liquid crystalline phases, (2) the nematic

to smectic A transition and (3) phase transitions invol-
ving blue phases and twist grain boundary phases.

2. Classification of phase transitions

Phase transitions are usually classified in first-order

transitions and so-called second order or continuous

ones. First-order phase transitions are thermodynami-

cally characterised by finite discontinuities in one or
more first derivatives of the relevant thermodynamic

potential. For the Gibbs free energy G(p,T) (appro-

priate for fluids) as a function of pressure p and

temperature T, this means that the entropy

S ¼ �ð@G=@TÞp and/or the specific volume

V ¼ ð@G=@pÞT are discontinuous (8,9). At second-

order (or continuous) phase transitions S and V are

continuous. Thus, in order to assess whether a transi-
tion is first order or continuous, one has to verify the

presence or absence, at the transition, of a discontinu-

ity in the specific volume �V or in the entropy �S, or

more conveniently, in the enthalpy, by determining the

latent heat given by �HL = Tt�S, with Tt the transi-

tion temperature. Experimentally, this is often not a

simple task for first-order phase transitions with (very)

small discontinuities, and requires very high-resolution
density or enthalpy measurements. According to the

classical Ehrenfest scheme (10) second-order transitions

are characterised by finite discontinuities in the second

derivatives of the Gibbs free energy. Thus, for

second-order transitions finite discontinuities are

expected for the specific heat capacity

Cp ¼ �Tð@S=@TÞp ¼ ð@H=@TÞp, the isobaric thermal

expansion coefficient �p ¼ V�1ð@V=@TÞp, and the iso-
thermal compressibility �T ¼ �V�1ð@V=@pÞT . The
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Ehrenfest scheme may be extended indefinitely to even

higher order transitions; however, these have never

been observed. Moreover, even for so-called second-

order transitions, where the first derivatives of the ther-

modynamic potentials remain continuous, the scheme

is not useful in practice. Rather than observing discon-

tinuities in the second derivatives of the Gibbs free
energy, equal values or simultaneous divergences from

both sides of the transition are observed. In this per-

spective it would probably be more appropriate to use

the term ‘continuous’ transitions rather than second

order. For continuous transitions quite often one uses

the term ‘critical point’, which is only appropriate if one

considers the variation of only a single thermodynamic

parameter. A dominant characteristic of continuous
transitions is the large increase in the microscopic fluc-

tuations in the vicinity, which heralds the approaching

transition.

In the left part of Figure 1, characteristic beha-

viour for the enthalpy H as a function of temperature

near a transition temperature Ttr is shown schemati-

cally for first-order as well as for second-order transi-

tions. The right-hand part of the figure gives the
corresponding temperature behaviour of the specific

heat capacity Cp ¼ ð@H=@TÞp.

In Figure 1(a) the temperature dependence of H

near a strongly first-order transition with a large latent

heat �HL at Ttr is given. H has a nearly linear depen-

dence on temperature below and above the transition.

This results in an almost constant Cp in both phases.

Figure 1(b) represents the case of a weakly first-order
transition with only a small latent heat, but H shows

substantial pretransitional temperature variation in

both phases, which results in anomalous pretransi-

tional increases in Cp. The total enthalpy change of

the transition can be written as:

�HL þ �H ¼ �HL þ
Z

�CpdT ; ð1Þ

with �Cp ¼ Cp � Cb
p the excess specific heat above the

background Cb
p .

Figures 1(c) to 1(e) represent three cases for

second-order phase transitions. At a second-order

phase transition the latent heat is zero and the specific

heat capacity exhibits singular behaviour at the critical

point (CP). Figure 1(c) is the case of the theoretical

mean-field second-order transition with a normal lin-
ear behaviour above Tc = Ttr and a rapid variation of

the enthalpy below Tc due to the changes in the long-

range order with temperature. This is reflected in a

rapid change of Cp below Tc on approaching the cri-

tical point, and a discontinuous jump at Tc. The cases

given in Figure 1(d) and 1(e) are critical-fluctuations-

dominated continuous phase transitions with

pretransitional enthalpy variations and specific heat

capacity anomalies above and below Tc. The main

difference between these cases is the difference in the

slope of the enthalpy curve at CP, resulting in a diver-

gence of Cp to infinity in Figure 1(d), or in a large, but

finite, Cp value at Tc in Figure 1(e). The enthalpy

change with the transitions is indicated by �H in the
figures.

All these types of phase transitions have been

encountered in the large amount of high-quality

calorimetric studies during the last three decades

(4–6). Further on we will concentrate on results

obtained by means of adiabatic scanning calorimetry.

3. Adiabatic scanning calorimetry

3.1 Modes of operation of an ASC

During nearly a hundred years several different calori-

metric techniques with varying degrees of accuracy

and precision have been developed. Traditionally,

heat capacity measurements are carried out by means

of the adiabatic heat pulse method introduced by

Nernst (11). In the experiment a known amount of

heat �Q is (electrically) applied to the sample and

the corresponding temperature rise �T is measured.
This �T step has of course to be sufficiently small

compared with the curvature of the enthalpy curve

H(T) at a given (average) temperature T, especially

near a phase transition, which makes the method

somewhat tedious and slow. The heat capacity (at

constant pressure) of a sample at a given temperature

is then obtained from:

Cp ¼
�Q

�T
: ð2Þ

Since in this way one looks at the derivative of the

enthalpy curve it should be clear that no information

can be obtained on the latent heat (and thus on the

order of a phase transition). Rewriting Equation (2) in
the following way:

Cp ¼
dQ

dT
¼ dQ=dt

dT=dt
¼ P=T

�
ð3Þ

(with t time and P power applied), shows the possibi-

lity of operation in dynamic modes. By keeping P or T
�

constant, while increasing or decreasing the tempera-

ture of the sample (positive or negative values for P

and T
�
), four practical modes of operation are obtained

(12–14). These modes require different settings for the

(adiabatic) thermal environment (thermal shields) of

the sample. The most interesting modes are the ones

with constant heating or cooling power P. As will be
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Figure 1. Schematic representation of the temperature dependence of the enthalpy H and the specific heat capacity Cp for
different types of phase transitions at Ttr. (a) strongly first order; (b) weakly first order; (c) mean-field second order; (d) second
order with diverging Cp; (e) second order with large but finite Cp. �HL is the latent heat and �H the fluctuations induced
pretransitional enthalpy change. CP indicates the critical point.
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pointed out further, these modes have distinct advan-

tages at first-order transitions. On the other hand,

modes where T
�

is kept constant have a basic problem

(even at very low scanning rates, e.g. sub-mK min–1) at

a first-order phase transition, because a finite amount

of heat (corresponding with the latent heat), necessary

to maintain T
�

constant cannot be delivered instanta-
neously. Rounding of effects will be the result. This

problem occurs also, but more extremely, in differential

scanning calorimetry (DSC) experiments, typically

operating at constant rates of 1 to 10 K min-1 (5).

Here we will only consider heating and cooling runs

with the power P of Equation (3) kept constant (modes

1 and 3 in references (12) to (14), where a more detailed

discussion is presented also on the constant rate
modes). In the heating mode with constant (electrically

applied) power Pe to the sample (cell), one has to

arrange for a negligibly small leaking power Pl to the

environment, measure Pe and carefully follow the evo-

lution of the sample temperature T(t) with time t.

From T(t) one can derive T
�

by numerical differen-

tiation and calculate Cp with Equation (3). Because

the rate T
�

is inversely proportional to Cp, at a sec-
ond-order phase transition with an anomalous heat

capacity increase the rate will decrease and thermo-

dynamic equilibrium and servo control of adiabatic

conditions is facilitated. First-order transitions also do

not pose a problem because in principle the rate stays

zero at the transition for a time interval given by:

�t ; tf � ti ¼ �HL=Pe; ð4Þ

with �HL the latent heat of the transition. ti and tf

are times during the scan at which the transition is

reached and left, respectively. In fact, the direct

experimental result T(t) immediately gives the

enthalpy as a function of temperature by:

H ¼ HðTsÞ þ Peðt� tsÞ; ð5Þ

with Ts the starting temperature of the scanning run at

the time ts. The implementation of a cooling run with

constant (negative) power is less obvious and has to be

realised by imposing a constant leaking power

between the sample (cell) and its isothermal environ-

ment. This can be done by imposing a constant tem-
perature difference. These conditions have to be

verified and usually involve calibration (certainly

when scanning over large temperature ranges) to

arrive at absolute values for the heat capacity or

enthalpy. This type of cooling run (with negative

power and negative rate) is very similar to the constant

power heating mode and also easily allows one to deal

with first-order transitions. Although an ASC is nor-

mally optimised for scanning, it can easily be operated

as a normal heat-pulse step calorimeter as well. This

can be very practical for calibration purposes and

verification of absolute heat capacity values.

3.2 Practical implementation

Very important in the operation of an ASC is the high-

resolution measurement and control of the tempera-

ture. An essential feature is the elaborate effort one

has to make to isolate the specimen (holder) from the

laboratory by means of a precisely controlled thermal

environment. To measure the heat capacity and

enthalpy of a liquid (crystal) one needs at least a liquid
cell and a surrounding (adiabatic) shield. However, for

high-resolution and slow scanning rates two or more

shields are required. Over many years we have con-

structed several ASCs. The differences resulted from

adaptation to study specific types of samples, the

extent of temperature range to operate or to allow

for novel electronic controlling possibilities. In the

past extensive analogue ac Wheatstone bridge-type
controlling systems had to be used (12,15–17).

However, the appearance during the last 10 to 20

years of fast PCs and measurement instrumentation

with extensive interfacing capabilities as well as

powerful software has significantly simplified the

design of an ASC as well its operation, and as a result,

it can run, if desired, for weeks without human

interference.
Figure 2 gives a schematic diagram of a four-stage

ASC that can operate between room temperature and

about 470 K. The centrally located cylindrical sample

cell is surrounded by three (copper) thermal shields.

Each of the stages (1 to 4) has its own thermometer

(Thi) and its own electrical (e.g. constantan) heating

wires. On stages 1 to 3 the heating wires are evenly

distributed and wound in grooves, and thermally
anchored with a good thermal conductive and electri-

cally insulating epoxy. Stage 4 of this calorimeter is

composed of a hot air oven and the outer thermal and

vacuum shield of the actual calorimeter with three

internal stages. The temperature of the oven is mea-

sured and controlled by means of the thermistor Th4

and computer-regulated power delivery to the heater

of the oven. The stages are in very poor thermal con-
tact and the space between the stages is vacuum

pumped. The sample cell is suspended by thin nylon

threads inside stage 2. To minimise further thermal

transfer between stages all electric connecting wires

are, on passing from one stage to another, several

thermal diffusion lengths long (for temperature varia-

tions at relevant time scales), and neatly coiled not to
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touch the wall of either stage. These wires are also

thermally anchored at each stage.

One of the consequences of measuring liquids is the

need for a (closed) sample holder. In order to achieve

maximum sensitivity, the heat capacity of the holder

should be as small as possible compared with that of

the liquid sample. This can be easier realised with large
samples and holders. However, for large samples

internal relaxation times might become important

even for slow scanning rates (13). In order to reduce

possible temperature inhomogeneities, stirring the

sample is very effective. In our calorimeters, stirring

in the horizontally mounted cylindrical cells is

achieved by means of a metal ball that can roll back

and forth inside the cell by changing periodically the
inclination of the plate supporting the calorimeter.

For common liquids and some liquid crystals large

samples (from a couple of grams to several tens of

grams) could conveniently be used. For less common

compounds we scaled down the size of the sample

holders substantially. Presently our smallest cells con-

tain 200 to 300 mg of sample and are made from

tantalum or molybdenum for chemical inertness,

good thermal conductivity and low heat capacity (18).

4. Data treatment and analysis

The basic data measured very frequently as a function

of time (typically every 5 to 10 s) during a heating run

in an ASC are the temperature of the sample and the
holder as well as the (constant) power. These results

are graphically displayed in the two central boxes of

Figure 3 for a weakly first-order transition.

After a long temperature stabilisation time of stage 2

(shield around the sample cell) with zero power to the

cell (stage 1), the cell attains the same temperature

(within a few tenths of a mK). Then the power is

switched on, at t0, to a chosen value depending on
the desired overall scanning rate. A typical run over

a couple of degrees takes several days or weeks (for

very slow scans). The temperature is measured with

�K resolution and the extremely large number of T(t)

data allows averaging (if desired) and determination

of local derivatives resulting in nearly as many T
�

values as T(t) data points by using several (consecu-

tive) data points in a moving time derivative (adding
one data point at one end and leaving out one at the

other end). A simple division P by T
�

at a given T(t)

results immediately in a Cp(T) value at that tempera-

ture. One should realise that these Cp(T) values are

total heat capacities for the sample and the sample

Figure 2. Schematic diagram of a four-stage ASC with
typical modern measurement and PC-controlled instru-
mentation. (1): sample in sample holder with stirring ball,
thermistor Th1 and heater (not shown); (2): shield with
thermistor Th2, platinum reference thermometer Pt2 and
heater (not shown); (3): shield with platinum thermometer
Pt3 and heater (not shown); (4): external vacuum tight shield
in hot air oven with thermistor Th4 and heater. K-2010
(7.5 digits multiplexer) and HP-34401 (6.5 digits multiplexer)
are multimeters. There are two HP-61818 power sources and
one home-made one.

Figure 3. Illustration of the treatment of the directly
obtained T(t) and P(t) data in a constant power heating
run for a weakly first-order transition to arrive at results for
the specific heat capacity Cp(T) and the enthalpy H(T). T0

is the starting temperature at the time t0. ti and tf are the
beginning and the end of a first-order transition at Ttr.
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holder together. Proper calibration of the (only weakly

T-dependent) heat capacity of the empty cell and

knowing the total amount of sample allows the calcu-

lation of the specific heat capacity of the sample. In the

case of the weakly first-order transition, the transition

is reached at time ti. From that moment until tf the

temperature remains constant over the time interval
given by Equation (4). According to Equation (5) the

direct combination of t(T) and P(t) data immediately

results in the enthalpy as a function of temperature,

including the latent heat discontinuity for a first-order

transition as displayed in Figure 3. The fact that in

ASC the most direct result is H(T) makes it a unique

tool for determining the order of a phase transition. In

Figure 3, at the first-order transition T versus t is
depicted perfectly horizontal and H versus perfectly

vertical. This is, however, an idealised situation for a

perfectly pure one-component sample. For real sys-

tems, even with minute amounts of impurities, as well

as for two or more component mixtures, one observes

a two-phase region. For rather pure one-component

systems this two-phase region is typically a couple of

tens of mK, and depends on the impurity type and
level and on the latent heat (19). ASC also allows

accurate determination of the two-phase region.

As already indicated, second-order (continuous)

phase transitions are characterised by large fluctuations,

which for a properly defined order-parameter diverge in

size to infinity. The divergence of the size of the fluctua-

tions can be described by a power law with a character-

istic critical exponent depending on the universality class
of the phase transition (20). Also the limiting behaviour

of the specific heat capacity at a second-order transition

can be described by means of a power law of the form:

Cp ¼ A �j j��þB; ð6Þ

with � = (T – Tc)/Tc, A the critical amplitude, � the

critical exponent, Tc the critical temperature and B the

background. In a constant power heating or cooling run

one readily arrives at the heat capacity Cp in Equation (3)

from the (known) power and the temperature-depending
rate by numerical differentiation of T(t), the carefully

measured temperature evolution of the sample with

time. However, the fact that via Equation (5) T(t) can

immediately be transformed in an enthalpy versus tem-

perature curve opens new possibilities for data analysis.

This can best be illustrated using Figure 4 with a generic

enthalpy curve for a continuous phase transition.

At the temperature T with a corresponding
enthalpy H(T), two quantities with dimensions

(J kg-1 K-1) of a specific heat capacity, Cp and C, are

introduced. Cp corresponds to the slope, dH/dT, of the

enthalpy curve at T, and C is defined as:

C ¼ H �Hc

T � Tc

; ð7Þ

and thus corresponds to the slope of the chord con-
necting H(T) at T with Hc at Tc. It can easily be shown

that C also has a power law behaviour of the form

(16,17):

C ¼ A

1� � �j j��þB: ð8Þ

Thus, both Cp and C have the same critical expo-

nent and background term, but a different critical
amplitude. Either Equation (6) or (8) can be used for

(non-linear) curve fitting of the experimental data to

arrive at important values for the critical exponent �
and amplitude A. However, by considering the differ-

ence (C – Cp), above or below Tc, the (unimportant)

background term drops out, resulting in:

C � Cp ¼
�A

1� � �j j��: ð9Þ

Taking the logarithm on both sides of Equation (9)

gives:

logðC � CpÞ ¼ log

�
�A

1� �

�
� � log �j j: ð10Þ

Thus, one obtains a straight line with a (negative)

slope immediately giving the critical exponent �.

Figure 4. Generic enthalpy curve near a second-order phase
transition at Hc(Tc). The slope of H(T) at a temperature T
corresponds to Cp and the slope of the chord between H(T)
and Hc corresponds to C.
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Applications of this procedure for several phase tran-

sitions will be given further.

5. Isotropic to nematic and to smectic A transitions

In this section, ASC results concerning the transition to
the nematic phase from the isotropic or directly to the

smectic A phase for some compounds will be consid-

ered. The only difference between the isotropic phase

and the nematic phase is the orientational order of the

long molecular axes of the (calamitic) liquid crystalline

compounds. A proper description of this orientational

order requires the introduction of a tensor of the

second rank (1,2). This tensor can be diagonalised,
and for anisotropic liquids with uniaxial symmetry

the nematic phase can be described by only one scalar

order parameter. For biaxial symmetry, a second inde-

pendent order parameter is required. In the vicinity of

the nematic-to-isotropic (NI) transition the thermo-

dynamic behaviour is usually described with the

Landau-de Gennes mean-field theory. For a uniaxial

nematic liquid crystal one writes the free energy F as
an expansion of the modulus of the order parameter S:

F ¼ F0 þ
1

2
A0S2 � 1

3
B0S3 þ 1

4
C0S4 þ 1

6
D0S6

þ :::: : ð11Þ

In the isotropic phase, S = 0 and F = F0, and in the

nematic phase S � 0. In Equation (11) one has B0 . 0

and A0 = a(T – T*)/TNI, with a . 0 and T* the

stability limit of the isotropic phase. The presence of

the cubic term leads to a first-order transition at TNI

with a finite discontinuity, SNI = 2B0/3C0 in the order

parameter. The excess heat capacity in the nematic

phase is given by (21):

Cp ¼ �aS
@S

@T

� �
p

¼ a2

C0TNI

1þ B0

2ðaC0Þ1=2

T�� � T

TNI

� ��1=2
" #

; ð12Þ

with T** the stability limit of the nematic phase. At

the NI transition temperature TNI there is a jump in
Cp equal to �Cp = 2a2/C0TNI. For the enthalpy dis-

continuity (latent heat) at TNI one obtains:

�HL ¼ HI �HN ¼ 2aB2
0=9C 2

0 : ð13Þ

Due to the presence of the (small) cubic term in
Equation (11), the NI transition is predicted to be

(weakly) first order. This is in agreement with experi-

mental observations. In Figure 5, part of the enthalpy

curve near TNI is shown for pentylcyanobiphenyl

(5CB), a compound of the alkylcyanobiphenyl
(nCB) homologous series (22,23). The transition

is clearly first order with a latent heat of 1.56 �
0.01 J g-1.

In the past ASC measurements on all the nCB

compounds from 5CB to 11CB have been done

(17,22–24). Recently we also measured 12CB, 13CB

and 14CB (25,26). It should, however, be noted that

the higher homologous 10CB to 14CB exhibit a direct
transition from the isotropic phase to the smectic A

(SmA) phase. At this transition additionally one-

dimensional positional order is superimposed on the

overall (nematic-like) orientational order and these

transitions are also first order. Moreover, latent

heats turn out to be substantially larger than for NI

transitions in the same homologous series. This can be

observed in Figure 6 where for the nCB compounds
from 5CB to 14CB parts of the enthalpy curves near

the NI or N–SmA are presented.

Figure 7 gives an overview of the transition tem-

peratures and latent heats for the isotropic-to-nematic

(IN) and isotropic-to-smectic A (I–SmA) transitions

for the nCB homologous series. For n � 9, one has NI

transitions and for n � 10 one has I–SmA transitions.

The NI transitions have rather small latent heats that
show the characteristic odd–even effect also visible

Figure 5. Temperature dependence of the enthalpy near the
nematic-to-isotropic transition for pentylcyanobiphenyl
(5CB).
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in the transition temperatures. The latent heats for the

I–SmA are substantially larger and the odd–even

effect is less pronounced for the latent heats than for
the transition temperatures. In Table 1 values of the

transition temperature, latent heats and the widths of

the two-phase region are given for all the nCB com-

pounds studied by ASC.

The latent heat values in Table 1, in particular for

the IN transition, are quite small and about two orders

of magnitude smaller than the latent heats at the melt-
ing transitions in the nCB compounds (17,24–26).

Thus, these transitions are close to second order and

one might expect fluctuation effects resulting in many

physical properties exhibiting critical point-like beha-

viour described by power laws with appropriate

critical exponents. This is, indeed, the case for many

properties including the specific heat capacity. Figure

8 gives the temperature dependence of Cp near the NI
transition for pentylcyanobiphenyl (5CB). Power law

fits with equations of the form given by Equation (6)

can be carried out to fit these and similar data to arrive

at critical amplitudes and exponent values. However,

fits with Equation (6) must be made separately above

and below TNI with different effective critical tempera-

tures (T* and T**) that are different from the first-

order transition temperature at TNI. Fits to Cp data
for several compounds (17,22,23,27,28) with expres-

sions of the type of Equation (6) are strongly dependent

on the fitting range. For the data in the nematic phase

Figure 6. Parts of the enthalpy as a function of temperature
near the isotropic to nematic transitions for 5CB to 9CB and
near the isotropic to smectic A transitions for 10CB to 14CB.
The data for 13CB have been shifted down by 2�C in order to
avoid overlap with the 14CB data.

Figure 7. Latent heats (filled symbols and solid line) and
transition temperatures (open symbols and dashed line) as a
function of the number of carbon atoms in the alkyl chain in
the alkylcyanobiphenyl (nCB) homologous series. Circles
are isotropic-to-nematic transitions and triangles are
isotropic-to-smectic A transitions. The stars indicate the
nematic to smectic A transitions for 8CB and 9CB.

Table 1. Overview of phase transition parameters for the
cyanobiphenyl (nCB) homologues series.

nCB TIN,TIA (�C) �Tcoex (mK) LIN,LIA (kJ kg-1)

5 35.29a 25b 1.56b

6 29.42 13 1.10

7 42.73 12 2.03

8 40.80 14 2.14

9 49.64 50 3.9

10 51.04 80 8.9

11 56.93 300 11.4

12 58.19 180 12.2

13 62.20 780 13.7

14 62.25 180 14.7

aThe transition temperatures are for the first appearance of the

mesophase in cooling runs.
bThe uncertainty is estimated to be 2%.

Figure 8. Pretransitional heat capacity in the isotropic and
the nematic phase near the isotropic-to-nematic phase
transition of pentylcyanobiphenyl (5CB).
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effective critical exponent � values are in the range 0.3

to 0.5. In the isotropic phase the uncertainty on the

effective � values is even larger (between 0.1 and 0.5)

because of the substantially smaller pretransitional

increase. Efforts to fit the smaller pretransional con-

tributions at the stronger first-order I–SmA transition

are even less satisfactory. Several other exponents, in

particular the order parameter exponent �, seem to be
close to the tricritical value, 0.25 for � (29). Keyes (30)

and Anisimov et al. (31,32) formulated arguments that

indeed tricritical values should be expected. Keyes

invoked the presence of two competing order para-

meters (uniaxial and biaxial ones) that are expected to

exhibit diverging fluctuations near TNI even for an on

average zero biaxial order parameter. Anisimov et al.

argued that the behaviour looks like that near a tricri-
tical point because of the smallness of the coefficient C

in the Landau expression of Equation (11). A specific

crossover expression between tricritical (� = 0.5) and

Ising-critical (� = 0.11) was also proposed for the

specific heat capacity by Anisimov et al (32). Good

fits to the data could be obtained with that expression

(containing several adjustable parameters) (27,22,23).

This is illustrated in Figure 8 where the solid lines
through the experimental data are based on such a fit

(22,23). However, conflicting results are obtained for

the same parameters in fitting equations when

deduced from measurements of different physical

properties. For example, the values for (T* – TNI) and

(T** – TNI) obtained from Cp data are consistently

about one order of magnitude smaller than values

derived from several other physical quantities. Thus,
more involved (theoretical) approaches seem to be

needed to fully understand the isotropic-to-nematic

transition or the isotropic-to-smectic A transition.

6. Smectic A to nematic transitions

The transition from the nematic (N) to the smectic A

(SmA) phase is probably the most extensively studied

phase transition in liquid crystals (33). However, in

spite of vigorous experimental and theoretical efforts,

many aspects of it are not yet understood, making this
transition still an intriguing and challenging problem

in the statistical mechanics of soft condensed matter.

In addition to orientational order, the smectic A

phase exhibits one-dimensional positional order (one-

dimensional density wave) as well. The first theoretical

efforts to describe the simultaneous existence of orien-

tational and positional order resulted in the (mean

field) molecular models formulated by Kobayashi
(34) and McMillan (35). A couple of years later de

Gennes (36) showed that the basic aspects of these

models could be represented by a Landau free energy

expansion with an additional coupling between the

smectic density-wave amplitude  and the scalar

nematic order parameter S. The one-dimensional

smectic density-wave (with a wave vector parallel to

the director along the z-axis) is characterised by a two-

component complex order parameter  .exp(i’z) with

magnitude  and phase ’. It was shown by de Gennes

that the behaviour of this two-component order para-
meter near the N–SmA transition was very similar to

that at the normal-superconductor transition (36,37).

Thus one expects the N–SmA transition (in the

absence of coupling between the nematic and smectic

order parameters) to belong to the 3D-XY universal-

ity class (1,20).

In the cases we consider here the coupling between

nematic and the smectic A order parameters is impor-
tant. For this reason we will give a summary of the de

Gennes theory involving the de Gennes S- coupling.

The relevant free energy density expansion is:

F ¼ FNðSÞ þ
1

2
�ðTÞ 2

þ 1

4
� 4 � C 2�S þ 1

2�
�S þ ::: : ð14Þ

FN is the nematic free energy density given by

Equation (11). For T , TN-SmA, one has

�S = S - S0, with S0(T) the nematic order parameter

in the absence of smectic order. The temperature

dependence of � is given by �(T) = �0(T - T0). � is a

temperature-dependent nematic susceptibility that is

large near TNI but decreases with decreasing tempera-
ture. �0, �, and C are positive constants. On minimis-

ing F with respect to �S, one gets �S = C� 2; and then

eliminating �S from F yields:

F ¼ FNðSÞ þ
1

2
�ðTÞ 2 þ 1

4
�¢ 4 þ ::: ; ð15Þ

with:

�¢ ¼ � � 2C2�: ð16Þ

Depending on the values of C and � and the resulting
sign of �’ three different cases can be obtained. For

�’ . 0 one has a continuous transition with

T0 = TN-SmA, �’ , 0 corresponds to first-order transi-

tions, and at �’ = 0 one has the crossover from

(second-order) continuous transitions to first-order

transitions at the tricritical point.

For pure compounds with TN-SmA close TNI (nar-

row nematic range) one expects a large � value and a
negative �’ value resulting in a first-order transition at

TN-SmA. On the contrary, for large nematic ranges �
will be small at TN-SmA and �’ positive. The N–SmA

transition will be second order. This difference in the
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order of the N–SmA transition can be illustrated by

looking at 8OCB and 9OCB, two compounds of the

octyloxycyanobiphenyl homologous series. 8OCB has

a nematic range of 13.1 K and the N–SmA transition is

second order within experimental resolution (38).

9OCB, with a nematic range of 2.17�0.05K, on the

other hand, is clearly first order with a latent heat of

about 0.46� 0.05 kJ kg-1 (39). In Figures 9 and 10, the

enthalpy as a function of temperature near TN-SmA is

displayed for the pure compounds 8OCB and 9OCB,

respectively.

Finding the condition �’ = 0 for the N–SmA tran-
sition and thus exactly being at a tricritical point for a

pure compound would be a lucky accident, although

for 9CB (nonylcyanobiphenyl) it is very close (40,41).

However, by mixing two liquid crystal compounds

(usually of the same homologous series), one with a

narrow nematic range (and a first-order N–SmA tran-

sition) and one with a sufficiently wide nematic range

(and a second-order N–SmA transition), it is possible
to arrive at a given mole fraction x to obtain the

proper width of the nematic range for �’ = 0 and a

tricritical point. ASC has been used extensively to

study in great detail the thermal behaviour along the

second-order and first-order parts along the

TN-SmA(x) line as well as at the tricritical x (40,41).

The fact that in ASC the direct result is the enthalpy as

a function of temperature, and can discriminate
between first-order and second-order transitions,

allows accurate location of the tricritical point.

With ASC one simultaneously obtains high-

resolution data on the fluctuations-induced specific

heat capacity anomalies near the N–SmA transitions.

If one characterises these anomalies in terms of the

specific heat capacity critical exponent � in Equation

(6), there are many liquid crystals that lie, because of
de Gennes order parameter coupling, in the crossover

region between tricritical with � = 0.5 and second-

order 3D-XY with � = �XY = -0.013 (13,33). In

Figure 9. Temperature dependence of the enthalpy near the
N–SmA transition of 8OCB. Within experimental resolution
the transition is second order (with an upper limit for a
possible latent heat of 1.8 J kg-1).

Figure 10. Temperature dependence of the enthalpy near the
N–SmA transition of 9OCB. The transition is clearly (weakly)
first order with a latent heat of 0.46� 0.05 kJ kg-1 and a two-
phase region of 35 � 2 mK.

Figure 11. Plots for the specific heat capacity Cp and the
quantity C of the Equations (7) and (8) near TN-SmA for a
mixture of 8OCB + 9OCB with mole fraction x8OCB = 0.55.

678 J. Thoen et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



order to arrive at accurate values for the (effective) �
critical exponent, the difference in Equation (9)

between the slope Cp of H(T) and of the slope C of

the chord (in Figure 4) at a temperature T is extremely

useful because the background is eliminated and linear

curve fitting can be done with Equation (10). Figure 11

displays the quantities Cp and C near the N–SmA

transition in a mixture of 8OCB+9OCB with mole
fraction x8OCB = 0.55.

Within experimental resolution the transition is sec-

ond order (39). In Figure 12 log(C – Cp) is plotted versus

log|� | resulting in an effective � value of 0.34 � 0.03, as

given by the negative slope (see Equation (10)). This

value is substantially larger than � = 0.18 � 0.02 for

the second-order N–SmA transition of 8OCB (38,42).

Thus, modifying the de Gennes coupling between the
order parameters S and  by changing the width of the

nematic range in mixtures of liquid crystals can result in

a change in the order of the N–SmA transition as well as

in large changes of the effective heat capacity critical

exponent � along the second-order part of the

TN-SmA(x) line. Narrow nematic ranges result in first-

order transitions and wide nematic ranges in second-

order ones with decreasing effective critical exponents �
with increasing width of the nematic range.

The situation is, however, quite different when chir-

ality plays a role. It was theoretically suggested (43,44)

that chirality always drives the chiral nematic-to-smectic

A (N*-SmA) transition first order. A few years ago

this theoretical prediction was verified in an ASC inves-

tigation (38). This transition was studied in mixtures of

the non-chiral liquid crystal 8OCB and the chiral CB15
(4-(2-methylbutyl)-4’-cyanobiphenyl), a binary system

with a large (chiral) nematic range that widens upon

increasing the chiral (CB15) fraction. Since 8OCB has

no measurable latent heat (see above), and taking into

account the widening of the chiral nematic range, the

possibility of a second-order to first-order crossover due

to an increased S- coupling can be excluded. For all

examined mixtures a latent heat could be determined at

the N*-SmA transition. The latent heat increased with

increasing mole fraction of the chiral compound.

Although the qualitative theoretical prediction of the
first-order character of this transition was confirmed,

the predictions of the evolution of the enthalpy or

entropy discontinuities were not consistent with the

experimental results (38).

Non-mesogenic additions can also have a profound

impact on the N–SmA transition of a liquid crystal.

Recently we studied, by means of ASC, the effects of

the non-mesogenic solutes cyclohexane (CH), biphenyl
(BP) and water (W) on the N–SmA (as well as on the

NI) transition of 8CB (octylcyanobephenyl) (45,46).

8CB exhibits a NI transition at 41.7�C and a N–SmA

transition at 33.7�C. Within experimental resolution

the N–SmA transition is second order with an effective

critical exponent�= 0.31� 0.03 (17). For BP and CH a

linear decrease of the NI and N–SmA transition tem-

peratures was observed with increasing solute mole
fraction. For 8CB+BT the width of the nematic range

increased with increasing mole fraction of BP. For

8CB+CH, on the contrary, the width of the nematic

range decreased with increasing mole fraction of CH.

For water the transition temperatures stayed nearly

constant (after a slight decrease for mole fractions of

water up to 0.1). For 8CB+W the nematic range slightly

increased up to xW = 0.1 and stayed constant above
that value. For water it was found that for mole frac-

tions of water above 0.1 phase separation between an

8CB-rich phase and a water-rich phase occurred. For

BP mole fractions of biphenyl and water studied, the

N–SmA transition remains second order. For

8CB+CH crossover from second order to first order is

observed at a tricritical point of the mole fraction xCH

of CH around 0.046. Above this mole fraction the
latent heat of the first-order N–SmA transition rapidly

increased with increasing xCH.

In Figure 13, the enthalpy is given as a function of

temperature for a mixture of 8CB+CH with a mole

fraction of xCH = 0.079. The latent heat discontinuity

is clearly visible at this first order transition. As illu-

strated in Figure 14 the effective critical exponent �
values at the N–SmA transitions of 8CB+BP decrease
with increasing xBP. Along the second-order part of

the TN-SmA(x) line for 8CB+CH the effective critical

exponents � values increase with increasing xCH from

the value of 0.31 for pure 8CB to the tricritical value of

0.5 for xCH around 0.046. For 8CB+W the � value is

nearly constant after a slight increase to a value of

0.36. The changes in the transition temperatures and

Figure 12. Plots of log10(C – Cp) versus log10|� | below
and above TN-SmA for the mixture of 8OCB + 9OCB (of
Figure 11) with mole fraction x8OCB = 0.55.
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differences between these three systems, and in parti-

cular the crossover from second order to first order for

8CB+CH, could be explained in terms of a mean-field

free energy density expression including coupling

terms of the mole fraction of the solutes with the

nematic and smectic A order parameters (46).
The addition of nanoparticles can have a significant

impact on the phase transitions in liquid crystals, in

particular on the nematic-to-smectic A transition. Very

recently we studied by ASC measurements the effects of

magnetic nanoparticles with different surface coatings

on the phase transitions of 8CB (47). Spherical nanopar-

ticles with a core diameter of 2 nm and different surface

coatings were used for this study. Two mixtures of 8CB

and the nanoparticles with an identical concentration

(30.6% wt) were prepared. In the first case (T1), the
nanoparticles were coated with aminopropyltriethoxy-

silane (APTS) and in the second case (T2) with mercapto

hexadecanoic acid (MHDA). For both mixtures, apart

from a decrease in the transition temperatures, a shrink-

age of the nematic range was observed, which is strongly

dependent on the surface coating. (TNI – TN-SmA) equals

6.63 K for T1 and 5.27 K for T2, compared with 7.03 K

for pure 8CB. The NI transition remains weakly first
order while the N–SmA transition is second order with

larger effective critical exponents (� = 0.35 for T1 and

� = 0.39 for T2) than for pure 8CB (� = 0.31). This

increase scales with the decrease of the width of the

nematic range and apparently enhanced coupling

between the nematic and smectic A order parameters,

similar to what was observed in the case of a non-

mesogenic solute dispersed in the same liquid crystal
compound (45,46).

The influence of adding magnetic nanoparticles is

quite different from the effects induced by (hydrophi-

lic) silica aerosil nanoparticles (typically 7 nm in dia-

meter) that form a thixotropic gel when dispersed in a

liquid crystal. In recent years, there have been several

detailed calorimetric studies on these kinds of systems

(48–53). The gel network induces quenched random
disorder that destroys the quasi-long-range order in

the SmA phase, but determining the effective critical

exponents � at the N–SmA transitions is still possible.

The presence of the aerosil gels does not significantly

change the transition temperatures or the width of the

nematic range. There is, however, a profound effect on

the de Gennes coupling between the nematic and

smectic A order parameters (S- ). There is a very
different behaviour between random aerosil gels and

(strong magnetic field) aligned aerosil gels. For ran-

dom gels (48–51), there is a slow shift from the (effec-

tive) � value of the pure liquid crystal as aerosil density

	S increases, until � reaches the 3D-XY value at 	S =

,0.1. In the case of 8CB in aligned aerosil gels, the de

Gennes coupling is completely absent and �XY values

are obtained for all investigated aerosil densities
(52,53). Thus, the effects on the de Gennes coupling

(S- ) of aerosil nanoparticles are completely different

from the effects observed for systems with magnetic

nanoparticles, with non-mesogenic solutes as well as in

(binary) mixtures of liquid crystals. All these different

observations infer a need for theoretical efforts for

understanding not only the induced disorder but also

Figure 14. Mole fraction x dependence of the effective
critical exponent � for 8CB and cyclohexane (CH),
biphenyl (BP) and water (W), respectively.

Figure 13. Temperature dependence of the enthalpy near
the first-order N–SmA transition (with a two-phase region
of 165 mK) in a mixture of 8CB and cyclohexane with a
cyclohexane mole fraction of 0.079.
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for a better understanding of nematic-to-smectic A

transition.

7. Chirality, blue phases, TGB phases and transitions

When calamitic liquid crystal molecules lack left–right

symmetry and the two types of handedness are not

equally present in the sample, additional diversity in

polymorphism occurs. In the chiral nematic phase
(N*) or cholesteric phase the molecular orientation is

nematic-like, but on a large scale (compared with the

molecular dimensions) the director orientation

acquires a spontaneous twist about an axis normal to

the preferred local molecular direction. The helical

pitch in the N* is substantially larger than molecular

dimensions and varies with the type of molecule. For

long pitch, one has a direct (weakly) first-order tran-
sition to the isotropic phase similar to the normal NI

transition. For chiral nematics with short pitch

(typically less than 500 nm), one can observe as

many as three so-called blue phases between the

isotropic and the normal cholesteric phase. In

order of increasing temperature they are named

BPI to BPIII. The first two blue phases have three-

dimensional cubic structures, whereas BPIII, which is
also called the fog phase, appears to be amorphous

(54–56). Phase transitions involving blue phases are

expected to be first order, except for the isotropic to

BPIII transition, which can become second order in

an isolated critical point at the termination of a first-

order line (57).

Figure 15 shows Cp results of cholesteryl nonano-

ate (CN) as obtained with ASC (58). From this figure
it is clear that there is a substantial heat capacity effect

associated with the isotropic-to-BPIII transition. This

indicates that a large amount of energy is going into

changing the local nematic order. The other transi-

tions appear as small features on the I-BPIII transition

peak. From a detailed inspection of the enthalpy beha-

viour (the direct ASC result) it was found that these

small peaks correspond with very small latent heats:

34 � 2 J kg-1 for N* – BPI, 11� 1 J kg-1 for BPI – BPII

and 3.6 � 0.9 J kg-1 for BPII – BPIII. With a value of

322 � 47 J kg-1 the latent heat at the I-BPIII transition

is much larger (58). The first calorimetric evidence for

a continuous I-BPIII transition was obtained by

Kutnjak et al. (59) in an ac and non-adiabatic scanning

calorimetry investigation of the highly chiral

compound S,S-(+)-4’’-(methylbutyl) phenyl-4’-

(methylbutyl)-4-biphenylcarboxylate (S,S-MBBPC).
Subsequent studies of mixtures of S,S-MBBPC and

its racemate identified a first-order line ending in a

critical point (60). It could also be shown (61) that

this critical point belongs to the Ising universality

class as theoretically predicted (62).

The chirality of constituent molecules can also

have significant effects on smectic phases. In tilted

phases the chirality of the molecules will impose a
twist axis normal to the smectic layers. A different

type of chirality-induced smectic phase is the so-called

TGB (twist grain boundary) smectic phases (63–65).

These phases are composed of smectic blocks (or

grains) separated by defects. The director (perpendi-

cular to the layers) is rotated by a constant angle

on going from one block to the next. Thus the helical

axis is parallel to the smectic layers. Depending on the
orientation of the molecules there are different TGB

phases, e.g. TGBA, or TGBC.

Blue phases are normally found between the iso-

tropic liquid and a chiral nematic phase of sufficiently

short pitch in the sequence N*-BPs-I, except in a few

cases where a direct BPI–SmA transition has been

observed (66,67). Some years ago we investigated by

ASC mixtures of (R) and (S) enantiomers of the chiral
compound ((R) or (S)-1-methylheptyl 3’-fluoro-4-

octadecyloxybenzoyloxy)tolane-4-carboxilate), synthe-

sised by Li et al. (68), with a phase sequence SmC*-

TGBc-TGBA-BPs-I (69). It was found that all phase

transitions, with the exception of the BPIII to isotropic

transition, are clearly first order. The BPIII to isotropic

transition peak showed a clear evolution (see Figure 16)

from a broad supercritical Cp(T) increase at low (S)
fractions to a sharp first-order transition at the highest

investigated (S) fractions.

From this evolution one expects the first-order line

to end at a critical point in the vicinity of 10.5 % (S).

These observations are in line with BPIII to isotropic

transitions with an underlying N* phase instead of a

TGBA phase, as the case here. However, the general

Figure 15. General overview of the specific heat capacity for
a temperature range covering all phase transitions involving
the blue phases of cholesteryl nonanoate.
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shape of the phase diagram derived from our data is

quite different from what is known in the literature
(62,70). A qualitative comparison between the two

types of phase diagrams is made in Figure 17. This is

the first time that this novel phase diagram has been

observed to our knowledge and a theoretical investi-

gation would be useful.

8. Summary and concluding remarks

After presenting some general aspects of the specific

heat capacity and enthalpy behaviour near first-order

and second-order phase transitions, we discussed the
different modes of operation of an ASC, its practical

implementation and the data treatment and analysis.

Results for the following types of liquid crystalline

phase transitions were discussed in some detail: the

isotropic to nematic and smectic A transitions; the

nematic to smectic A transitions in pure compounds,

in mixtures with other liquid crystal and with non-

mesogenic solutes and in dispersions with

Figure 16. Evolution of the specific heat capacity in
mixtures of ((R) and (S)-1-methylheptyl 3’-fluoro-4-
octadecyloxybenzoyloxy) tolane-4-carboxilate) in the
TGBA-BPs-I region with increasing (S) enantiomer
concentration. The supercritical BPIII-I Cp anomaly at low
(S) concentrations evolves to a first-order transition at higher
(S) concentrations through a critical point around 10.5%.

Figure 17. General form of the temperature (T) versus
chirality (�) phase diagram involving blue phases (a) as
normally found in literature with a N* phase present and
(b) as obtained from our ASC experiments with the N*
phase replaced by a TGBA phase.
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nanoparticles; phase transitions involving blue phases

and TGB phases. From these experimental data, it

should be clear that the fact that ASC directly results

in the enthalpy as a function of temperature is a unique

feature allowing discrimination between (even very

weakly) first-order transitions and second-order

transitions. Also, for second-order transitions the
combination of Cp (the temperature derivative of

the enthalpy) with the quantity C introduced in

Equation (7) and Figure 4 is a powerful tool to deter-

mine the relevant critical exponent �. Other types of

liquid crystal phase transition, not discussed here,

have also been investigated by ASC, e.g. the smectic

A to smectic C transition, the nematic to smectic C,

smectic A to hexatic B transition and the nematic-
smectic A-smectic C multicritical point (71–74).
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